为了培养出高品质的晶体,必须使用纯度大于或等于99.99%的高纯铋,这种纯度更适合于培养的高品质的金属晶体。
影响铋晶体质量和大小的重要因素是冷却时间。通过使铋单质从熔化状态缓慢冷却并且固化,或许就能够生长出较大的晶体。
铋的熔点与其它金属单质相比相对较低,只有271℃,使用一个小型的丁烷喷枪或电炉就可以轻松的将其熔化。但是,熔化的铋具有高温,可能导致严重的烧伤。
影响铋晶体质量和大小的重要因素是冷却时间。通过使铋单质从熔化状态缓慢冷却并且固化,或许就能够生长出较大的晶体。
铋的熔点与其它金属单质相比相对较低,只有271℃,使用一个小型的丁烷喷枪或电炉就可以轻松的将其熔化。但是,熔化的铋具有高温,可能导致严重的烧伤。
根据使用的铋的体积,在各种容器中放入适量的铋单质,加热熔化他,并准备一块中等大小钢板和小型的铁制容器来制作铋晶体。
步骤
第1步:熔化铋
将铋单质放入一个钢制器具中并放置在高温的热板上。
熔融的铋暴露在空气中并被迅速氧化,因为高温和氧气形成灰色的表层,这是正常的。
将铋单质放入一个钢制器具中并放置在高温的热板上。
熔融的铋暴露在空气中并被迅速氧化,因为高温和氧气形成灰色的表层,这是正常的。
铋熔化后,将液体铋缓慢地小心地倒到另一个干净并且预热过的钢制容器中。
通过将铋熔液转移到新的容器中,可以除去影响晶体生长的已经氧化的表面。
将铋液体倒进新的容器之后,可以观察到残余的铋的氧化物仍然留在原容器中。
将铋液体倒进新的容器之后,可以观察到残余的铋的氧化物仍然留在原容器中。
一段时间后,新容器中的铋出现一层清晰可见的新的氧化层。新的氧化层并不如上一层那么厚。新的氧化层在不断增厚的同时将会吸收不同波长的光线导致不断变色。这就是为什么铋晶体表面会有那么多种颜色。
第4步:倒出多余的铋
当铋完全凝固之后,将多余的液态铋倒入另一个容器中。不要让铋充分固化;如果不倒出多余的液体,晶体将会成为被困在量杯中的金属块。 通常铋晶体生长时间的长短会导致晶体的大小变化。但是,如果等待时间太长,尚未形成晶体的过量液态铋将凝固并影响已经形成的结晶。
什么时候倒出多余的液态铋并没有固定的时间限制,因为它取决于现场的实验条件。通过照明设备我们可以观察到液态铋的即时状态。如果在液体表面上的还会有波纹,并且铋仍是液态。随着越来越多的铋凝固,波纹将会越来越小并且晶体变得可见。
请注意,不能经常移动正在凝固的液态铋,因为它会影响晶体的形成:将会有很多小的铋晶体出现,并不会生成大的单晶。
可能需要多次尝试才能获得良好的晶体。如果等待太久,溶液凝固只能重新熔化,然后再试一次。甚至可以尝试使用倒出过量的液态铋在二级容器中以形成新的晶体。
当铋完全凝固之后,将多余的液态铋倒入另一个容器中。不要让铋充分固化;如果不倒出多余的液体,晶体将会成为被困在量杯中的金属块。 通常铋晶体生长时间的长短会导致晶体的大小变化。但是,如果等待时间太长,尚未形成晶体的过量液态铋将凝固并影响已经形成的结晶。
什么时候倒出多余的液态铋并没有固定的时间限制,因为它取决于现场的实验条件。通过照明设备我们可以观察到液态铋的即时状态。如果在液体表面上的还会有波纹,并且铋仍是液态。随着越来越多的铋凝固,波纹将会越来越小并且晶体变得可见。
请注意,不能经常移动正在凝固的液态铋,因为它会影响晶体的形成:将会有很多小的铋晶体出现,并不会生成大的单晶。
可能需要多次尝试才能获得良好的晶体。如果等待太久,溶液凝固只能重新熔化,然后再试一次。甚至可以尝试使用倒出过量的液态铋在二级容器中以形成新的晶体。
第5步:取出晶体
过滤出多余的液态铋之后,在铋晶体生长的容器内应该可以看到生长完成的铋晶体。在铋晶体暴露于空气中的几分钟内其表面将会出现很多颜色。铋晶体可能会被卡在容器内,或者会有粘稠的液态铋附着在铋晶体上。待它们冷却之后可以轻松地折断它们并从容器中取出。容器的内表面会导致晶体出现固有的缺陷,因为总是会有晶体附着在容器的内表面上。避免这一缺陷的方法是通过使用一颗晶种悬浮在熔融的液态铋上作为晶体生长过程中的成核点。之后,只需要将铋晶体从溶液中提出,而不是到处过量的液态铋。晶种放置时间不宜过长,否则可能会与容器中其他晶体融合导致过大无法取出。
过滤出多余的液态铋之后,在铋晶体生长的容器内应该可以看到生长完成的铋晶体。在铋晶体暴露于空气中的几分钟内其表面将会出现很多颜色。铋晶体可能会被卡在容器内,或者会有粘稠的液态铋附着在铋晶体上。待它们冷却之后可以轻松地折断它们并从容器中取出。容器的内表面会导致晶体出现固有的缺陷,因为总是会有晶体附着在容器的内表面上。避免这一缺陷的方法是通过使用一颗晶种悬浮在熔融的液态铋上作为晶体生长过程中的成核点。之后,只需要将铋晶体从溶液中提出,而不是到处过量的液态铋。晶种放置时间不宜过长,否则可能会与容器中其他晶体融合导致过大无法取出。