具体现在以下几个方面:
1. 浓缩液的补加方式;
2. 镀速的选择;
3. 挂具的设计;
4. 三大参数在槽中的一致性;
5. 浓缩液的补加方式
大型工件的表面积动辄就是 500 甚至是 1000 平方米,而且需要 50~60 微米的厚度,所以整个工件所消耗的浓缩液几乎和我们镀槽的开缸量差不多,甚至一个零件镀过之后,槽液的寿命就超过了一个周期( MTO )。这就需要我们必须在镀覆的过程对槽液进行补加,而且如果要得性能均一的镀层,我们需要一个稳定的镍离子工作浓度,那么就会有每分钟几十升的流量,这样低温、高浓度的浓缩液势必对槽液形成一个冲击,大型镀槽的这种冲击要比我们常用的小镀槽更加严重,一旦镀液分解或造成其它事故,损失将十分巨大。
在以往比较成功的个案中,我们会把浓缩液回热到一定的温度加到镀槽中,或者我们在大槽的旁边设计一个体积为主镀槽十分之一的缓冲槽,并用泵与主镀槽之间形成槽液循环,补加液先流进缓冲槽,再经槽液循环而后进入主镀槽对零件进行镀覆。笔者比较倾向于后一种设计。这样就可以避免高浓度低温的浓缩液对槽液的冲击,在主镀槽中形成一个比较稳定的环境,而有利于化学镀镍的进行。
镀速选择
通常的生产中,大多数人认为镀速越快越好,这样可以缩短生产周期。但在一些特殊工件上,却是另外一种情况。例如长管束型的零件,我们对管内管外同时进行镀覆,如果镀速过快,加上管内的局部装载量较大,那么管内的镍离子得不到充分的补充,管内的镍离子浓度就会变低,而造成与管外的镀覆环境不同,从而形成了性质不同的镀层,甚至相差很大。这时我们就需要一个比较低的镀速,让管内的工作液有充分的时间进行交换,必要时我们还要进行强制的交换。当然这需要我们工艺人员在镀覆之前对零件的具体尺寸等实际情况进行精确计算。
另外如果是高磷镀液,较低的镀速更有利于我们得到更高磷含量的镀层。低镀速对于我们得到致密的镀层,降低镀层的孔隙率也会有很大的帮助。
挂具的设计
特大型零件尺寸大,重量大,对挂具首先有强度的要求,而且不能在高温下发生形变。一般大家选用钢制挂具,如果不是不锈钢的话,应该首先在挂具的表面进行防锈处理,并且在能浸入到镀槽中的部分进行阻镀涂覆。
设计挂具时首先要考虑的是安全性,工件在被吊车吊起时可能会因为行车走动而产生晃动,如果设计不合理,工件可能会从挂具上脱落而造成损坏。通常我们在做挂具时,要考虑的是工件与挂具是点接触,以防止产生漏镀点,但是点接触对工件与挂具结合的牢固性会产生矛盾,需要做些特殊设计。
另外要考虑的是便于操作的设计,主要是挂具在空中的稳定性,工件在上线前后的摆放问题及工件在生产线上发生意外时的可调整性。
三大参数在槽中的一致性
几十立方米的镀槽中,温度、 pH 、镍离子浓度的均匀一致性是一个在小型镀槽中不太常遇到的问题。如果一致性控制不好,镀层的厚度差别会达到 10~15% ,这就使得化学镀镍的第一个优点,均匀性得不到实现,所以零件表面的防腐性能就会因镀层厚度的不均一而产生差异。
控制均一性,首先科学、充分的搅拌是必要的。在生产线调试期间,我们要对搅拌的科学性进行验证,充足的过滤机或搅拌机流量是必要的,如果是过滤机搅拌,一般每小时的过滤量要大于镀槽的总容量,用流动溶液的实验表明,为了获得均匀的镀层,不要过高的流速,宁可靠近工件的表面强烈搅拌,我们的设计原则是工件表面任何部位的镀液流速都不成超过 2m/s 。需要将这一研究结果体现在化学镀槽的设计中。多个小功率的搅拌器产生的效果比一个大功率的搅拌器要好。同样,在泵通过过滤机循环以后供给的镀液,应该使用多管出流孔。同时,相比之下搅拌机的位置或者过滤机出入口的摆放则同样重要,如果摆放不合理,则不会达到理想的搅拌效果。
此外,我们前面讲到的缓冲槽的设计对于工艺参数的均一性则会产生很重要的作用。
从以上几个方面的阐述中,我们可以看出,特大型工件的槽体设计及工艺设计几乎涵盖了各种类型化学镀镍生产线中所要注意的问题。这需要我们的所有技术人员组成项目小组进行详尽周密的研究、布置。